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We consider translation-invariant attractive spin systems. Let T~. x be the first 
time that the average spin inside the hypercube A reaches the value x when the 
process is started from an invariant measure v with density smaller than x. We 
obtain sufficient conditions for (2) [A[-l logT},x~q)(x)  in distribution as 
[A[ ~ 0% and [A[ i logET~,x~q~(x) as ]A[--* 0% where ~0(x):= - l i ra  A [A[ -1 
log v{(average spin inside A) ~> x}. And (2) T~A,.,./ET~,x converges to a unit mean 
exponential random variable as [A[ ~ oc. Both (1) and (2) are proven under 
some type of rapid convergence to equilibrium. (1) is also proven without extra 
conditions for Ising models with ferromagnetic pair interactions evolving 
according to an attractive reversible dynamics; in this case q~ is a ther- 
modynamic function. We discuss also the case of finite systems with boundary 
conditions and what can be said about the state of the system at the time T~, x. 

KEY WORDS: Interacting spin systems; large deviations; occurrence times; 
Glauber dynamics. 

1. I N T R O D U C T I O N  

Large deviations from typical behavior play an important role in many 
physical, biological, and sociological systems. Their systematic 
investigation is a topic of much current interest in statistical mechanics and 
probability theory (see, for instance, Refs. 2, 7, 12-15, 27, and 29). In this 
paper we investigate the asymptotics of first occurrence (hitting) times of 
some rare events for spin systems or lattice gases on Z a evolving under 
certain types of stochastics dynamics, including Glauber dynamics. These 
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systems are frequently referred to as interacting particle systems or random 
cellular automata. 

In our analysis the system will be assumed to be in a statistically 
stationary state which may or may not be a Gibbs state for some interac- 
tion. In either case the rare events will be described by large deviations of a 
macroscopic quantity, i.e., the magnetization in a large box, from its typical 
(stationary) value. We are therefore studying large fluctuations around 
equilibrium. We hope, however, and this was one of our motivations, that 
the methods developed here will also be useful for studying the large 
fluctuations around a metastable state that are responsible for its 
decay. (5,16,24,30,32) 

The setting of our problem is very general: we have a space E on 
which there is defined a stochastic (or deterministic) process (~) t~o  with 
an invariant measure v, not necessarily unique; t ~ ~+ or Z +. Let A, a E 
be a sequence of events such that lim~ v(A,) = 0 and define the sequence of 
hitting times, starting from v, as 

T,=inf{ t  >~O: ~ e An} (1.1) 

We study two basic questions about the asymptotic behavior of T, as 
n --~  o(3:  

1. 

. 

What is the magnitude of Tn? E.g., the behavior of its expectation, 
median, etc. 

What is the asymptotic distribution of T,? In other words, does 
there exist a sequence of numbers (an) such that TJa~ converges in 
distribution to a measure that is not concentrated on 0 or ~ ?  In 
this case what can be said about the limiting distribution? 

These kinds of questions have been studied in Refs. 2-4, 5, 20, 23, and 25 
when (it) is a Markov process with good recurrence properties. These con- 
ditions are unfortunately not satisfied for the interacting particle systems in 
which we are interested. There are, however, some things that can be said 
quite generally. Question 1 is clearly related to the ergodic theory fact that 
the fraction of time the system spends in A,, is equal to v(An); this indicates 
that for systems that after visiting An return rapidly to equilibrium, Tn 
should be of the order of t/v(An). In discrete time it is easy to prove a 
corresponding lower bound for T,. Indeed, 

P( Tn <<. a,) <<. a, v( A,) (1.2) 

from which it follows that if any(A,,) ~ O, then Tn is asymptotically concen- 
trated above an. In continuous time one can use a similar argument, 
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provided that the system spends a positive minimal amount of time in An 
before leaving it. {If this is not true, it is easy to think of conterexamples; 
for instance, consider the deterministic evolution ~t = ~o + t(mod 1), v = the 
Lebesgue measure on [0, 1), and An = [0, 1/n], or, even worse, An equal to 
the rationals in [0, 1). } In the cases considered in this paper we will use an 
argument close to the one above by showing that after reaching An the 
system spends there, with large probability, an amount of time much larger 
than v(An). Our main problem as far as (i)  is concerned will be to obtain 
an upper bound on Tn that is also of the same order. 

To see what may go wrong with the upper bound, we can imagine 
situations where the system, after reaching An for the first time, returns to 
An many times before relaxing back to equilibrium. This is the type of 
behavior that might be expected to occur when An is separated from 
"typical" states by a "potential barrier," e.g., when An represents a 
metastable state. In these cases the magnitude of Tn should be related to 
the reciprocal of the height of the barrier, which can be much larger than 
v(An) -1. This is in fact what happens in certain mean field models of 
ferromagnetic systems with Glauber type dynamics ~5"19) and weakly pertur- 
bed dynamical systems in double-well potentials. (16'24) (The analysis in 
these papers is made with the system starting in the higher well, which 
corresponds to a metastable state, and one is interested there in the passage 
to the lower well, which corresponds to equilibrium. Nevertheless, it is 
clear that the same kind of analysis applies for the reverse phenomenon.) 

In the present paper we show that for attractive stochastic spin 
systems (those that satisfy an FKG-type property (28)) a rapid rate of 
approach to a stationary state (which can be proven in many cases) leads 
naturally to an upper bound on the Tn that coincides to leading order with 
the lower bound. The proof goes via an inequality, which may also be valid 
in other cases. Assume that lira n n-1 log v(An) = -q~ and that for all k and 
O<~ t~ <~ t2... <tk <t  

IP(~t~A,l~ti~(A,)C,i=l ..... k ) -v (A , ) ]<~f (n)e  -~t-tk) (1.3) 

with 2 > 0 and f (n)  growing only polynomially with n. Then we have the 
result that 

n -1 log Tn --* q) in distribution as n ~ oo (1.4) 

For attractive spin flip dynamics whose rates satisfy detailed balance 
with respect to a Gibbs state for an Ising system with translation-invariant 
interactions (attractive stochastic Ising models in the terminology of Ref. 28 
or attractive Glauber dynamics) we will prove results of the type (1.4) 
without assuming conditions of the type (1.3). 

Question 2 is not related directly to good ergodic properties and the 
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answer to it can be expected to be less universal. Assuming, however, that 
the system makes many "attempts" to reach A, before it succeeds and that 
after each failure it comes back to "typical" configurations, then T,/a, 
should converge to an exponential random variable for suitable a,, (see 
Ref. 3 for more on these heuristics). This is what happens in a much studied 
variant of our problem obtained by keeping the set A fixed, but modifying 
the process to obtain a sequence of stationary states vn so that v,(A)--, O. 
This is the setup for the Freidlin-Wentzell theory ~15) of perturbations of 
deterministic evolution. One is interested, then, in the asymptotics, as the 
random perturbation vanishes of hitting times of the complements of 
domains that include an attracting point. In this case the results indicated 
by the heuristics above have been proven to be correct with great 
generality. (8'15"34) We prove the results in our case under rapid convergence 
to the stationary state. (In Ref. 15 information about the hitting place was 
also obtained; we will obtain some information of this type also in our 
case.  ) 

In the next section we introduce the type of interacting particle 
systems that we will be considering and state the results. The proofs appear 
in Sections 3 and 4. 

2. THE MODELS AND RESULTS 

2.1. The Models and Terminology 

The systems we consider in the paper are interacting spin systems. The 
state space is Ed = {0, 1 }zU (endowed with the product topology) for some 
dimension d; elements of this space are called configurations and will be 
represented by the letters t/, ~, and ~. For a given configuration t/ and 
i ~ Z a, t/(i) = 0 or 1 will be called the spin at site i. Measures on Ed will be 
denoted by /~ and v. We let Y- denote that set of measures that are 
invariant with respect to the translations of Z d. We let 6 a, a = 0, 1, be the 
measure concentrated on the configuration identically a. Let C be the set of 
continuous functions from E to R and C+ be the subset of C of functions 
that are coordinatewise nondecreasing, kt is said to be stochastically greater 
than v if, for any f e  C+,  

f f dv <~ f f d~ 

We write in this case # >/v. A measure # is said to have positive correlation 
or to be F K G  if for any pair f,  g ~ C +, 
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Sometimes it will be more convenient to consider the state space as 
{ -  1, 1 )zd; for this purpose we introduce the variables 

a(i) = 2r/(i) - 1 

We consider the class of translation-invariant attractive spin systems, (28) 
hereafter denoted by d .  These are Markov and Feller processes with state 
space Ea, whose evolution is given by the flip rates c(i, q) [the rate at 
which ~/(i) flips to 1 - q ( i )  when the system is in the configuration q]. 
Translation invariance means that c( i, ~1) = c( i + j, q + j), where 
( q + j ) ( k ) = q ( k + j ) .  Attractiveness means informally that zeros attract 
zeros and ones attract ones. More precisely, if the configuration q is 
dominated by ~, in the sense that q(j)<<. r Vj ~ Z a, then 

c(i, tl) <~ c(i, ~) if q(i) = ~(i) = 0 

c(i, tl) >1 c(i, ~) if tl(i ) = ~(i) = 1 

In order for the infinitesimal rates c(i, ~) to define a unique process, 
one must assume that they do not depend very strongly on the spins at 
sites far away from i. A sufficient condition ~28) is that c(0,-)  be a 
continuous function and that 

sup ]c(0, ~/)--c(0, qg)] < oo (2.1) 
ic  z d  q~ Ea 

where ~/i is the configuration obtained from q by flipping the spin at the site 
i. If (2.1) holds, then 

c = sup c(0, t/) < 
q 

Let S(t)  denote the semigroup corresponding to the process above and 
write #S(t)  for its action on a measure #. The set of invariant measures 
under S(t)  will be denoted by J .  

The process will be denoted by ( i f ,  t/> 0) or ( i f) ,  where/~ is the initial 
distribution. If p is concentrated on a confuguration q, we write (47, t ~> 0). 
Expectations with respect to these processes will be indicated by E(-). 

Some of the fundamental facts about systems in d are summarized 
next (for proofs see Ref. 28): 

1. 6oS(t)  [resp. 61S(t)]  converges weakly to a masure v [resp. v+]  
which belongs to ~- r~ J and is called the lower [resp. upper]  
invariant measure. 

2. v and v + are F K G  and ergodic with respect to translations. 

822/48/3-4-24 
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3. | f v ~ J ,  thenv  <~v<~v+. 
4. Let p+ = v+{q(0)=  1}. Then the following three statements are 

equivalent: (a) The process is ergodic, i.e., there exists a measure v 
such that #S(t) converges weakly to v for any #; (b) v _ = v + ;  
p_ = p +. Clearly in this situation v = v_ = v +. 

5. If tt ~ Y is F K G  and #S(t) converges weakly to a measure v, then 
v ~ 5 m J and is FKG.  

An important subclass of ~r is that of the stochastic Ising models 
(Glauber dynamics) with attractive flip rates c(., .) corresponding to 
systems with ferromagnetic, translation-invariant pair interactions. This 
class will be denoted by ~-. To define it, one considers a constant 
H ~  • and a nonnegative, real-valued function J on Z d that satisfies 
J(i)=J(-i), Vi~Z d, and 

J(i) < oo 
i ~  Z d 

J is called the interaction and H the external field. In order to define the 
dynamics, one imposes on the c(i, q) the condition of reversibility (detailed 
balance): 

exp [fl  ~ J(i-j)a(i)a(j)+ flHa(i)] s q) 
[_ J J 

= c. .  [ - . Z . . -  , ,  o . ,  - . . o . ,  , 
J 

where t/i is the configuration obtained from t /by  flipping the spin at site i, 
and fl > 0 is called the inverse temperature. For  any J, H, and fl as above 
there are rates c(i, tl) that satisfy (2.1) and (2.2) and are attractive. (='2g) 
Two such rates that appear frequently in the literature are 

c(i,~)=exp{-fl[~J(i--j)a(i)a(j)+Ha(i)l} 

It is known (28) that 5- c~ J is in this case identical to the intersection of 5 
with the set N of Gibbs measures for the interaction J and external field H 
at inverse temperature fl, i.e., the set of measures such that a version of the 
conditional probability 

v{q: a(i) = v(i) [ o-(j) ----- v(j) Vj r i} 
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is given by 

for any r e  { - 1 ,  1} z~. 
We are interested in the process (~ ,  t ~> 0) starting from an invariant 

measure. In order to define the rare events that we consider, let 
(A~),=~.2,.. = ( A )  be a sequence of d-dimensional hypercubes in Z a con- 
verging to the whole space Z a. Given (2 c Z a, let 1s be its cardinality and 
for a given ~/e E set 

X a = X o ( r / ) =  1(2[ -~ ~ q(i) 
i ~ 2  

Define now 

A + = {~/: XA(~/) ~>x} A , x  

Given # and x, define the hitting times 

+,~-inf{t>~0: ~ A  + } T A , x  - -  ~ t A , x  

-r ,# Its quantils 3a,x (a) are defined by 

+,,u a P(r2~ ~>/~A,x ( ) ) = a  
_ _  + , ~ u  for a ~ (0, 1). The most important one will be f l+f(e  1)_  flA,x" There are 

analogous definitions for A~,~, T2f ,  and f l~f(a) .  

Warnings; We will sometimes omit the indices + ,  /~, x when the 
meaning is clear. We may also use a bar instead of the index v , so T~, x = 
T~,;~'-, etc. And we write v{q(O) = 1 } instead of v{q: q(O) = 1 }, etc. 

2.2. Main Resul t s  

The following was proven in Ref. 27: 

T h e o r e m  0. Suppose that v is an invariant measure for a system in 
J ,  which is also F K G  and translation-invariant and is neither 30 nor 61. 
Then there exists a convex function ~Pv: [0, 1 ] ~ [0, ~ )  such that: 

(a) q~v(x)>0 if x < p _  or x>p+ 

(b) limlA[ 11ogv(A+~)=-~ov(x) if x > p  
A 

lim [AI - l  log v(AS,x)= -~Ov(X) if x < p  
A 
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where 

(c) ~p,(x) = s u p { h x -  g~(h)} 
h ~  

where 

n~(h) = lira }AI -~ log f exp(h IAI X~) dv 
A 

Under some extra conditions we will prove the following statements 
for x > p [the first three are clearly equivalent and will be referred to as 
(S1) later]: 

~- ,v  __ (Sla) l imlAl-~logflA,x(a)--~v(x),  VaE(O, 1) 
A 

(Slb) lim P{exp[IA I (~pv(x) - ~)] 
A 

+ , v  < TA,x <exp[IA} (q)v(x) + e)] } = 1, V~>0 

(S lc) ]A I-1 log TA+S converges in law to a degenerate distribution 
concentrated on q~(x) 

($2) lira 1At -~ log ETA, +'~ = ~v(x)  
A 

($3) T+,~/t~+,~ converges in law to a unit mean exponential ~ A , x  / H  A,x 

random variable as IAI ~ 

($4) lira E T  +,~/R+,~ = 1 A,x IH A,x 
A 

We will assume some conditions on the system in order to be able to 
prove these statements. We believe that the results are true with greater 
generality, but it should be clear that some conditions are needed. For 
instance, if the system is not ergodic, and we pick v = �89 + �89 and 
�89 +�89 < x < p + ,  then ($3) should be false. 

We have two types of conditions. One type [(C.Exp.) and (C.Pol.)] in 
terms of the rate of convergence to equilibrium and the other [(C.Pr.)] in 
terms of the approximation of the system by finite systems. Let 

D,(u) = I#S(t){q(0) = 1 } - p_ ] 

The first conditions are then 

(C.Exp.) D,(6o) ~< C e x p ( - ~ t  ~) for some positive C, ~, 6 

(C.Pol.) D,(6o) ~< Ct -~  for some positive C and cr > 1 

R e m a r k  1. Condition (C.Exp.) is clearly true for exponentially 
ergodic systems. (2s) This class includes the extralineal proximity systems, (is) 
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i.e., additive spin systems with a positive rate of spontaneous births (jumps 
from 0 to 1). It also includes systems with weak interactions, such as 
stochastic Ising models at high temperature (fl small) (~'21~ or in one 
dimension, (21) and systems defined by adding independent flips with suf- 
ficiently large rates to a system in d .  (2s) 

Remark  2. The analogue of (C.Exp.) from the other side (i.e., 
replacing p_  by p+ and 30 by 6~) is known to hold for the supercritical 
basic contact process in one dimension. (9) This result was extended in 
Ref. 17 to a larger class of systems in sr with nearest neighbor interactions. 

Remark  3. An important tool that we will use in our analysis is the 
basic coupling. (2s~ For  kt ~< v one can construct (~") and (~7) on the same 
probability space in such a way that the mass is concentrated on paths 
such that ~f(i) ~< ~( i )  Vie Z d, Vt ~> 0. It follows that for/~ ~< v 

P(~(O)  # ~'- (0)) = P(~(O)  = O, ~'- (0) = 1) 

= 1) 

= Dr(it ) <~ D,(3o) (2.3) 

In order to specify the other condition, we first need some definitions. 
For  N =  1, 2 ..... let / ' = f i N  = {1 ..... N}  a and consider the new process on Ea 
defined by the rates 

~(i, r t )={~  ( i 'q)  if i 6 F  
if i 6 F  

One can think of the spins outside F as a fixed boundary condition. The 
new system is also attractive; it is in general not translation-invariant, but 
as in fact 1 of Section 2.1 one can define the lower and upper invariant 

N by starting with 6o or 6~ and letting t ~  oe. Define measures v N and v+ 
n o w  

= Irl  ' log f dv~ exp(h  Irl  XF)  (2.4) 

We have the following condition: 

(C.Pr.) For  any h e  ~, r%(h) and n~v(h) converge as N ~  oe to the 
same limit (which depends on h). 

Remark  4. By attractiveness it folows (see Theorem 2.7, Chapter III 
N Therefore it is clear that (C.Pr.) is equivalent to of Ref. 28) that v u - ~< v+. 
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l imsupn~(h)<.liminfnN(h ) if h~>O 
N - - + ~  N--* oo 

limsupnN(h)<~liminfn~(h ) if h <0  
N ~ o o  N ~ o o  

N So Remark E. If v e J ,  it follows as above that v u - ~< v ~< v+. 

nN(h)<<.lFt-~logfexp(hlFIXr)dv<<.n+(h) if h>~O 

n~(h)~iFl -~ logfexp(h lFIXr)dV~nN(h)  if h < O  

Consequently, (C.Pr.) implies that all the invariant measures have the 
same "pressure" n~(h)= n(h) and that 

lim n+(h) = n(h) (2.5) 
N ~ o o  

By the uniqueness of the Legendre-Frechet transform, it follows that 
q~v(x) does not depend on v. Set (pv(x)= q~(x). Since v is ergodie with 
respect to translations, it follows that q)(p ) =  0. Analogously, rp(p+)= 0. 
By the convexity of ~0(.) and part (a) of Theorem 0, we conclude that in 
this case 

~o(x) = 0 ~=~xe Ep- ,  p + ]  

Remark 6. It is easy to verify that (C.Pr.) holds for the systems in 
_ N restricted to F are the Gibbs measures with - and + ~ .  The v u and v+ 

boundary conditions and it is well known ~31'33~ that in the thermodynamic 
limit, N--* ~ ,  rc+(h) converge to the same limit, which is, up to trans- 
lations, the thermodynamic pressure. Large deviations for the translation- 
invariant Gibbs measures (for a much more general class of potentials) 
were first studied in Ref. 26 and more recently (in a stronger sense) in Refs. 
7, 13, 14, and 29. The following result, stronger then part b of Theorem 0, 
holds for any measure v in this class: 

lim tA] -1 logv{X~E [-a, b]} = - inf q)(x) 
A a<~x<~b 

(2.6) 

for any O<~a<b<<. 1. 
We state now our main results for systems in sr 

Proposition 1. If v ~ Y n J  and is FKG,  then for any x > p =  
v{t/(0) = 1} 
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(i) liminfJAJ l logfl+'~(a)>~ov(x) Va~(0, 1) 
A 

(ii) lim inf fA]-1 log ET+,f >~ ~ov(x) 
A 

T h e o r e m  1. Assume that (C.Pol.) holds. Then ($3) and ($4) hold 
for v and any x > p_  such that q~v_(x)> 0. 

T h e o r e m  2. Assume that (C.Exp.) holds. Then (S1) holds for v 
and a n y x > p  . I f ~ 0  v ( x ) > 0 ,  then (S2) also holds for v . 

Corollary 1. Assume that (C.Exp.) holds and v ~ J .  Then for 
x > p _  

-k,V (i) limsupJA[-llogflA,x(a)<~ov (x) Va~(0 ,1)  
A 

(ii) limsuplAl-llogET+,,~<~o~_(x) if q~v_(X)>0 
A 

T h e o r e m  3. If v~or then for any NE {1, 2,...} and x E ( p _ ,  1) 

(i) lim sup lAl - l  log A/xta)<~ON(X ) fo rany  0 < a < l  
A 

(ii) lim sup [A[ -1 log E T  +'~ A,~ ~ ~0N(X) 
A 

where 

~0 u (x) = sup {hx - zc~v (h)} 
h 

Corollary 2, Assume that (C.Pr.) holds and v ~ J .  Then for any 
x ~ ( p _ ,  1), (1) and ($2) hold. 

Clearly, there are analogous statements for TA- f with v+ in place of 
v , etc. In the case of exponentially ergodic systems (see Remark 1), 
Theorems 1 and 2 state that (S1)-(S4) hold when v is the invariant 
measure. For  the supercritical one-dimensional basic contact process (see 

-,v+ This should Remark 2), the analogues of (S1)-($4) hold for T A ,  x , X < p+. 
be compared with similar results obtained, when x = 0 ,  for the contact 
process on a finite set A = { 1 ..... n } (i.e,, when there is no infection from A c 
to A) in Refs. 5, 10, 11, and 32. 

Proposition 1 is a very general and easy to prove statement that the 
time T~]+~ is bounded below by e x p { [ q ~ ( x ) - e ]  IA[} for any e > 0 .  In 
Theorem 2 we give sufficient conditions for a sharp bound in the other 
direction, but it works only for v . This result has as an immediate con- 
sequence Corollary 1, which gives an upper bound for a general v c J ,  but 
it is not necessarily the best upper bound. In Theorem 3 we obtain another 
upper bound for a general v ~ J ,  this time without any extra condition. 
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This bound is sharp when (C.Pr.) holds (Corollary 2); in particular, for any 
system in ~ .  This last result holds even at critical temperatures, when the 
hypothesis of Theorem 2 should be false (it is in fact known to be false in 
the case of the two-dimensional nearest neighbor ferromagnetic Ising 
model(22)). Furthermore, since ~(h) is, up to translations, the ther- 
modynamic pressure, one is relating the time to see a large fluctuation in a 
stochastic Ising model to a purely thermodynamic (equilibrium) quantity. 
In particular, the result does not depend on which attractive rates c(i, ~) 
satisfying (2.1) and (2.2) are chosen. A particularly interesting case is when 
H = 0 and fl and J are such that v ~a v +, i.e., when there is a phase trans- 
ition. In this case q)(x) is identically zero for p < x < p + and positive out- 
side this interval (see Remarks 5 and 6). For any v E J ,  Corollary 2 implies 

- -  ,v then that TA~'~ v (and TA,x) does not grow exponentially with [AI if 
x �9 [p_ ,  p + ], but does grow exponentially otherwise. 

2.3. Dynamics w i th  Boundary Condit ions 

A problem related to those discussed up to now is that in which one 
considers systems with fixed boundary conditions outside A. Then as A 
increases, both the dynamics and the events we are waiting for to happen 
are being modified. One has a large system and is observing the behavior of 
the whole system, while in the cases treated before one was observing a 
large part of a system that is in fact much larger. The techniques used to 
prove the previous results work only in part for this type of problem. 
Theorems 1 and 2 have analogues in this case depending on estimates 
similar to (C.Pol.) and (C.Exp.), which are uniform in the boundary con- 
ditions. These types of conditions are verified for extralineal proximity 
systems. (18) Theorem 3 and Corollary 2, on the other hand, go through 
with the same proofs. In particular, for attractive stochastic Ising models 
with any sequence of boundary conditions outside A the following result 
holds. For each A consider the process starting from its unique invariant 
(Gibbs) measure corresponding to the chosen boundary conditions. Let TA 
be the first time that the average magnetization MA= [A[-I~ieA a(i) 
reaches a fixed, nonempty open set S c ( - 1 ,  1). Define the free energy 
associated to S (as usual, except for a factor fi- l)  as 

F ( S ) = - l i m L A t - l l o g  ~ e x p { f l [  ~ J( i - j ) ( r ( i ) ( r ( j )  
A e r e  { - - 1 , + 1 }  A i , j~A 

M A E S  

lEA 
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Then, as iAI --' o% 

IAI-1 log T A ~ F ( S ) -  F ( [ - 1 ,  1]) 

[A1-1 log ET A ~ F(S) - F ( [  - 1 ,  1]) 

in distribution 

739 

2.4. S t ructure  of Trajectories 

The previous results can also give some information about how the 
system looks at the time T~',~ + . In fact, with the techniques used to prove 
them, it is not hard to prove the following result: 

P r o p o s i t i o n  2. Assume that (S1) holds. Let B A be a sequence of 
sets of configurations and suppose that 

lira sup IA[-1 log V(BA) < --q~(x) (2.7) 
A 

Then 

lim P(r ~ BA) = 0 
A 

This result is particularly useful for systems in ~ ,  since for them con- 
dition (2.7) can be expressed in terms of restricted partition functions and 
in many interesting cases one can verify this condition. For  these systems 
an analogue of Proposition 2 holds also when boundary conditions outside 
A are fixed. In a sense to be made precise below, Proposition 2 implies that 
for systems in ~ the system at the time T~,, + is very likely to be in a typical 
configuration of a Gibbs measure that corresponds to a different value of 
the external magnetic field H. For this purpose consider the function h(m) 
such that 

f (7 d#h(m ) -~- m 

where #h is a Gibbs measure for the system with the same interaction J ( . )  
and inverse temperature fl and external magnetic field H + h .  The basic 
properties of the Gibbs measures of systems in ~(12,31,33~ assure that h(m) 
is well defined and unique for - 1  ~< m ~< 1. If J( .  ) and fl are such that more 
than one Gibbs measure exists for H = 0, then different values of m corres- 
pond to the same h. More precisely, in this case, there exists m*~ (0, 1) 
such that h(m)= - H  for -m*~< m ~<m*. Now we are ready to state: 
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Proposition 3. 
suppose that 

Let B A be a sequence of sets of configurations and 

t.th(m)(BA) <~ Ce ~lAI (2.8) 

for some positive C and 7. Let v be a translation-invariant Gibbs measure 
and assume m > ~ a(0) dv. Set x = (m + 1)/2. Then 

lim P ( ~ ] +  e BA) = 0 
A 

To some extent this proposition says that at time TA+,~ the system 
looks as if it were in a Gibbs ensemble for the system with modified 
magnetic field H+h(m) .  This is the case if H +  h(m)#0 ,  so that ]~h(m)is 
unique. In this case it is, for instance, easy to verify from Proposition 3 that 
the expected value with respct to ~.2;v of the spatial average of translations 
of any cylindrical function must b~ close to the expected value of this 
function with respect to tth(m). It is also easy to prove that if A is divided in 
two parts that grow to infinity, the average ~r(i) in each one of these 
regions must be close to m at time T~',x + . 

2.5. Independent  Systems 

The hypothesis of attractiveness made in all of the above statements is 
certainly not a necessary one. Nevertheless, as will be seen, it plays a major  
role in the proofs. We mention now only one very particular case of a 
process for which part  of the proofs can be adapted. Let W =  {wl,..., wr} be 
a finite set of real numbers. To each i e Z d associate a continuous-time 
irreducible Markov process ~t(i) with state space W. These processes are 
assumed to be mutually indepedent and to have the same transition rates. 
We will refer to these processes as independent processes and when dealing 
with them we will use ~ and ~/for configurations in W zd and/~ and v for 

+ measures on this space. A~, x, T2x, and ~A,x(a) a r e  defined as before. 
Systems in this class have clearly only one invariant measure v, which is a 
product of measure v o on W. Therefore, v has large-deviation properties as 
stated in Theorem 0, with 

rcv(h ) = ~ Vo(Wi) e hW~ 
i = 1  

(p~(x) = sup{xh - ~,,(h)} 
h 

For this class of systems we will prove: 
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Proposition 4. Let v be the unique invariant measure for an 
independent process. Then for x greater than the density of v, (S1) and ($2) 
hold. 

In the case W =  {0, 1 } the independent processes are in fact attractive. 
In the particular case in which the flips from 0 to 1 and from I to 0 occur 
with the same rate the system is the well-known Ehrenfest model (in 
continuous time). In this case the convergence to unit mean exponentials 
for the renormalized hitting times of rare events was first proven in Ref. 4. 

3. P R O O F S  U N D E R  R A P I D  C O N V E R G E N C E  TO E Q U I L I B R I U M  

Proof of Proposition 1. 
we assume ~0(x) > 0. 

Set 

(i) If q~(x)= 0, the proof is easy; therefore 

SA =inf{t  ~> TA: ;5,~q~A~,x} 

Clearly S A -  TA has tails that are greater than those of an exponential 
random variable with mean (clAl)- l .  

Given 0 <7  < qKx), let nA be the integer part of e ~lAI lAp 2. Then 

P(TA < exp(TJA])) 

<~P(SA_TA<~ZIA j 2) 

+ P ( ~ A  + fo r some t~{k tA]  -2" k = l ,  2 ..... n A + l } )  A,x 

~<[1-exp(clA] 2lAt 2)]+[]A12exp(TiAi ) + l ] v ( A + x )  

By Theorem 0, part b, the right-hand side of the above expression vanishes 
as IAt ~ oe. Therefore, for ae (0 ,  1) and JA[ large enough, fll~(a)>e 7lAI 
Hence 

lim inf ]A] -1 log flA(a) >1 7 
A 

(ii) ETA >/flAP(TA >flA)=flA .e 1. Therefore the result follows from 
(i) above, l 

The proof of Theorem 1 will be divided into several lemmas. The basic 
idea is that conditioned on not having hit A + by time t the process is in a A,x 
state that is stochastically smaller than v (Lemma 1) and then (C.Pol.) 
implies that in an appropriate sense it approaches v again very fast 
(Lemma 2). 
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k o m m a  1. Assume that  v e J c~ J and is F K G .  Fix t > 0 and x and 
let # be the condit ional  distribution of (~ given TA+) v > t. Then # ~< v. 

Proo[. Let {t~, t2,... } be an enumerat ion  of the rational numbers  in 
[0, t] such that  t~ = t. By Corol lary 2.21 of Chapter  II of Ref. 28 it follows 
that for any n ~ N and any pair of cont inuous increasing functions f ,  g: 
( E y  ~ R 

E v v v v (f(~,~ ..... ~ ,~  g((,~ ..... i t , ))  

,v v E v ,..., v ~>E(f(g ,~,..., ~,~ (g(~,, ~,,)) (3.1) 

Take 

g(t/1,..., t/,) = { 10 
if qieA~,~forsomei=l, . . . ,n 
otherwise 

and let f depend only on its first coordinate,  f(r/~,..., q , )  = f(r/~). Define the 
event 

v A + tn} a.= {~r ~,~,s=t~,..., 

Then it follows from (3.1) that 

E v , r ( f (~ , ) ,  (Gn) ) />  E(F(~[)) P((G.) ~) 

Hence 
v .< E(f(~ t)] G.) .~ E(f(~[)) 

But as n --* ~ ,  Gn decreases to { T A > t}. So 

f f d t t=E( f (~) l  TA>t)<~E(f(~[))=f f dv I 

L e m m a  2. Assume that  (C.Pol) holds, and #~<v . Fix a t > 0  and 
x > p such that  (pv_(x) > 0. Then  

+'~ t R + ' v - ~ - - P  ( T + ' v  > t g + ' V - ~ l - - ~ O  as I A l ~ o e  I P ( T A , x  > t.~l,x J t ~ A , x  eA .x  ~L 

Proof. Consider a numerical sequence (bA), which will be chosen 
laterl F rom the basic coupling 

IP( T~ > tfl3) - P( T A > tfl A)l 

<~ P(TA <~ bA) + P(SA - TA < 2 IA1-2) 
+ P ( ~ A ( i )  ~ ~s ( i )  for some i e  A and some 

s e { b A + k [ A  I 2:k=O,l,. . .}W{tflA}) (3.2) 
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where, as in the proof of Proposition 1, 

SA =inf{ t  >~ T A ' ( , r  

We know already that the second term on the rhs of (3.2) vanishes as 
]A[ ~ oo. Therefore, we need to find b A such that the other two terms also 
vanish. The last one is smaller than 

[AI C ( b A + k [ A l - Z ) - ~ + C ( t f l A )  -~ 
0 

<<, IA[3 C ~ (bA + i) -~ + tAI C(tflA) -~ 
i=O 

<~lA]3C x ~dx+]AlC(t f iA)  -~ 
bA -- 1 

= ] A [ 3 C ( a - 1 )  l (bA- -1)  -~+I+]AIC(t f lA)  -~ 

Using Proposition 1 and the fact that qgv_(x ) > 0, it is easy to see now that 
the choice b A : [A[ 4 / ( ~ - 1 )  suffices for us. | 

The next lemma will be needed to prove ($4). 

l . e m m a  3. Assume that (C.Pol) holds and that ~ov ( x ) > 0 .  Then 
there exists a function h: [0, ~ ) ~  0~ such that ~ h ( s )d s<  ~ and for A 
large enough 

+,v +,v_ << h(s) P(TA,x >S'flA,x ) 

Proof. By attractiveness and the Markov property 

P(~A > s~A) ~< [p(T~0 > eL) |  s- ,  

But by Lemma 2, P(T~~ f lA)~ e -~ as ]A[ ~ ~ . Therefore it is clear that 
h(s) can he chosen as b ~ i, for s o m e b ~ ( e  1,1). | 

Proof of  Theorem I. To prove ($3), it is enough to verify that for 
any t, s > 0  

I P ( T A > f i A ( t + s ) ) - - P ( T A > f i A t ) . P ( T A > f i A S ) ] - - * 0  (3.3) 

as ]A] ~ oo. Then it follows by induction that P(TA > flA t)--* e - '  when t is 
of the form p2-q  for positive integers p, q. By monotonicity and density the 
same must then be true for any t > 0. 

By the Markov property 

~'(TA > / ~ ( t  + s)I ~ > / L  �9 s) = P(T~ >/7~. t) 
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where # is the conditional distribution of ~)A.s given that T A > flA" S. By 
Lemma 1, # ~< v _. Therefore by Lemma 2 

I P ( T ~ > f l A t ) - - P ( T A > f i A t ) I ~ O  as [A[ -+ oc 

from which (3.3) follows immediately, finishing the proof of ($3). 
In order to prove ($4), observe that 

E T A _ I  
C a P(TA > s ) d s =  (~ P(TA> flA t) dt 

flA flA Jo Jo 

Using Lemma 3, dominated convergence, and ($3), 

re=  t,im t, =/o l a  ETA e - '  dt = l I 
fiA A 

Proof of  Theorem 2. For simplicity we present the proof only in the 
case 6 = 1. The proof in the more general case is analogous. 

Given ~ > q~(x), let l be the integer part of IA] -2e~tAI. Then by attrac- 
tiveness and the Markov property 

P( T A > eYtAI) <<. P(  ~klAt 2 r A ~,x, k = O, 1 ..... l) 
+ 

EP(~f3t2 r AA,x)]' 

From (2.3), translation invariance, and (C.Exp.), 

r({f312 r A ~,x) <~ P( ~tAI 2 (E AN+x) + C IAI e -~lAt~ 

=v ((A+x)C)+CIAI e -=IAI2 

Therefore, using the inequality log z ~< z - 1, 

log P(fA >e'~lxl)<~/log{v [(AA+~) C] + CIAI ~JAt2} 

<~l{v=[(AA+x) ~] + ClAt e -~lAt:- 1} 

~< [[A1-2 eYlAl+ O(1)] [-CI IA] e -~IAI2- v_(AA+x)] 

Using Theorem 0, part b, it is clear that the rhs of the last expression goes 
to - ~  as IAI ~ ~ .  Therefore lima P(Tj->e~IAI)=O, from which it 
follows that 

lim sup flA(a) ~ 7 
A 

Together with Proposition 1, this implies (S1). 
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Now ($2) follows from ($4), which was proven in Theorem 1 under 
the weaker assumption (C.Pol.), provided q3(x)> 0. | 

We show now how the proof of Theorem 2 can be modified in order to 
prove Proposition 4. 

Proof of Proposition 4. Let 7 and l be as in the proof above. Now 

v M + P(Ta>e~l~t)<~P(~klAi2(~ A,x, k = 0 ,  1 ..... l) 

_ _  v + v q- v + - P(~o r AA,x) P(~l,t2 r AA,x [~o 6 AA,x)"" 

An,: ..., ~(i ,)IAIZ6AA,x) (3.4) • ~ + v + 

By the finiteness of W, there exists C, a > 0 such that for any measure/~ 

P(~(i)  r ~( i ) )  <~ Ce ~' (3.5) 

for an appropriate coupling of (~)  and (~) .  (Let them evolve indepen- 
dently until they hit. See, for instance, Section 1 of Chapter 2 of Ref. 28). 
Therefore 

p v + _ , [ (~lAi2r P(~Ar2r <~C]AIe -~1AI2 

From this and the Markov property applied to each term on the rhs of 
(3.4) it follows that 

p ~ , e-~lAI2] ! P(T~>e61AJ)~<[ (~AI2r  A 

The proof of (S1) can now be finishes as was done in the proof of 
Theorem2 (of course, the analogue of Proposition l holds without 
assuming attractiveness). 

We canot prove ($2) as we did in Theorem 2, since we did not prove 
($4) in the present case. Using the coupling for which (3.5) holds, the same 
proof used for Lemma 2 shows that given e > 0 there exists V large enough 
such that if I A]> V, then for any measure ~t 

P(T~ > ~A) <~ P(T~ > / ~ )  + e = e -1 + e (3.6) 

But for integer K 

P(T~ > Kfl~A) = P(T~ > ~A) P(T~ > 2/~1T~ > fl~) -- �9 

x P(T} > K~AI T] > (K-- 1) /~)  
By the Markov property, 

K 

P(T 5 > K / / ~ ) =  [ I  P ( T f  > fl~A) (3.7) 
k = l  
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where #1= v and, for k ~> 2, #4 is the conditional distribution of ~k-1)~;~ 
given that T~ > ( k -  1)fl~. From (3.6) and (3.7) it follows that for IAI large 
enough 

p ( T va > t f l  , A) <~ b t - 1  

for some b E (e -1, 1). Now 

ET~A = P( T~ > t ) dt = ~A P( T~A > fl~A t ) dt 

<<, [I~A b' i dt = C [3~A 

from which point it is easy to finish the proof. | 

4. PROOFS UNDER GOOD A P P R O X I M A T I O N  BY 
FINITE S Y S T E M  

Proof of Theorem 3. Fix an N~ {1, 2, 3,...}. For each k ~ Z  a set 

F(k) = {i~ za: i - k S s  { 1,..., N} a} 

F(0) = F =  { t,..., N} d 

We will now define a new spin system (which will be attractive, but not 
translation-invariant) by the rates 

CN(i ' j )  = CN(i ' qi) 

where 

i (tl(j) if there exists k such that i, j e F ( k )  
t/ = ~0 otherwise 

Let ((,) be the process defined by these rates and Ss(t)  the corresponding 
semigroup. Clearly under this dynamics the spins inside different cubes 
F(k) do not interact. Define #u as the weak limit of 6oSu(t) as t ~ o% 
which exists by attractiveness. Then the restriction of #• to each cube F(k) 
is an independent copy of v u - [-see the definition of this measure before the 
statement of (C.Pr)]. 

Set 

z A = inf{t ~> 0: (t ~N ~ AJ-x } 
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and define cSA(a), a e ( 0 ,  1), by 

P('cA > fin(a)) = a 

It follows from Theorem 1.5 of Chapter 3 of Ref. 28 that it is possible 
to couple {i t)  and (~fu) in such a way that the mass is concentrated on 
paths such that ~fN ~< i t  for every t ~> 0. Therefore 

flA(a)<~6A(a), Va~ (0, 1) 

ETA <~ E'r ~ 

On the other hand, if the sequence (A) is such that each A is the union 
of cubes F(k), then Proposition 4 implies that 

lira [A1-1 log (~A(a) = lira [A[ ~ log EzA = ON(X) 
A A 

[In order to have the hypothesis of Proposition 4 verified consider for each 
F(k) a Markov process whose states are only those that can be reached 
from 6o.] This finishes the proof in this case. For  a general sequence (A), 
let s A =s be the largest union of cubes F(k) contained in A. Then 
limA([DI/[AI)= 1 and therefore given e > 0, TA, x <~ Te,x+~ for large enough 
A. It is now easy to finish the proof, remembering that ON(X) is convex and 
therefore continuous on (0, 1). | 

In order to prove Corollary 2 below, we will need the following 
lemma. This lemma may be well known, but since we did not find it in the 
literature, we prove it below. 

I_emma 4. Let fn: ~ R w { + ~ 1 7 6  be a sequence of convex 
functions that converges pointwise to a function f Let 

gn(x) = s u p { h x -  fn(h) } 
h 

g(x) = sup(hx - f (h )  } 
h 

A = inf{x e N: g(x) < oe } 

B = sup{x c ~: g(x) < oe } 

Then gn(x) ~ g(x) for any x e (A, B). 

ProoL Since x e ( A , B ) ,  l i m h ~ o o [ h x - f ( h ) ] = - o o .  Otherwise for 
yE (x, B), l i m h ~ [ h y - f ( h ) ]  = oo, which is absurd. Analogously, 
l i m h ~ _ o o [ h x - f ( h ) ] = - c o .  Therefore, there exists h 0 eN  such that 
g(x) = hox - f ( ho ) .  

822/48/'3-4-25 
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Now, for fixed x6(A,B) ,  it is possible to find a<b  such that 
h x - f ( h )  <<. g(x) - 1 if h r [a, b]. 

It is known that a sequence of convergent convex functions converges 
uniformly on compact sets (see Theorem VI.3.3 of Ref. 12). Therefore, given 

> 0, there exists no such that for n > no 

]f(h)-f=((h)l<~e/3 f o r a n y h e [ a , b ]  

Hence, for n > n o ,  hox-fn(ho) is greater than both a x - f n ( a  ) and 
b x - f , ( b ) .  By the concavity in h of h x - f , ( h ) ,  it follows that 

s u p { h x -  f=(x)}= sup { h x -  f~(x)} 
h ~ R  h~[a,b] 

But the distance between the rhs above and g(x) cannot be greater than 
e/3, finishing the proof. | 

Proof of Corollary 2. By Lemma 4, (C.Pr.), and Theorem 0, part c, 

( x )  = s u p { h x h  - s u p { h x  - =  o(x) 

as N --, 0% for any x e (0, 1 ). 
The sharp upper bound for /?](a) and ET~ follows now from 

Theorem 3. To verify the lower bound, we can use Proposition 1 for v+, 
since T~ dominates T~+ from above. Another way to prove the lower 
bound is to repeat the arguments of Theorem 3 using + boundary con- 
ditions outside each F(k) and then using Lemma 4 as above. This approach 
is necessary when one considers the generalization of the present corollary 
to finite systems with boundary conditions, as discussed in Section 2.3. II 

Proof of Proposition 2. Define O A = inf{ t >~ O: ~ ~ B A }. Then, by the 
hypothesis (2.7) and the argument used to prove Proposition 1, there exists 

> 0 such that 

lim P(O A < exp{ [AI [-~0(x) + e] }) = 0 (4.1) 
A 

But 

P(~rA ~ BA) <~ P(O A <~ TA) 

<<. P(TA >>- exp{ IA[ [-q0(x) + e] }) 

+ P(OA < exp{ IAI [q0(x) + e] }) 

which goes to zero as [AI ~ 0% by (S1) and (4.1). ] 
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Proof of Proposition 3. We consider a system with finite-range 
interaction J(.  ). In the case of infinite-range interactions the inequalities 
(4.3) below have to be slightly modified; we leave these details to the 
reader. 

Define the sets of configurations 

C~A = {q: 2X'A(r/) -- 1 ~ Ira, m + 6] } 

= @ :  IA,- '  ~ ~(i)e[m,m+6]} 
i~A 

For any 3 > 0, it is clear that at the time TA the system must be in the set 
C~A if A is large enough. Therefore, from Proposition 2, it is enough to show 
that 

lim sup IA1-1 log v(B A ~ C~) < - ( p ( x )  (4.2) 
A 

But [we abbreviate h = h(m)] 

v(A2_~) v(C~A) 

<<. m(B~ ~ C3) 
i~h(C~A) expE261Alh+o(IAI)] 

-</4t'(BA) exp [-2c5 IAI h + o(IAI)] (4.3) ~,,(c~) 
where the o([AI) appears because of boundary effects, since the field h also 
modifies the configuration outside A. By (2.6) and the definition of h(m) 

lim fAI ~ log#h(C~)=0  (4.4) 
A 

From (4.3), (4.4), and (2.8) it follows then that 

lim sup ]A[-i log v(B A (3 C~a) ~ --(p(x) - -7 + 26h 
A 

for every c5 > 0. This implies (4.2). 
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